The G protein-coupled receptor rhodopsin in the native membrane.

نویسندگان

  • Dimitrios Fotiadis
  • Yan Liang
  • Slawomir Filipek
  • David A Saperstein
  • Andreas Engel
  • Krzysztof Palczewski
چکیده

The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational changes in the g protein-coupled receptor rhodopsin revealed by histidine hydrogen-deuterium exchange.

G protein-coupled receptors (GPCRs) are activated by ligand binding, allowing extracellular signals to be efficiently transmitted through the membrane to the G protein recognition site, 40 Å away. Utilizing His residues found spaced throughout the GPCR, rhodopsin, we used His hydrogen-deuterium exchange (His-HDX) to monitor long-time scale structural rearrangements previously inaccessible by ot...

متن کامل

The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes.

Rhodopsin, the prototypical G-protein-coupled receptor, which is densely packed in the disc membranes of rod outer segments, was proposed to function as a monomer. However, a growing body of evidence indicates dimerization and oligomerization of numerous G-protein-coupled receptors, and atomic force microscopy images revealed rows of rhodopsin dimers in murine disc membranes. In this work we de...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor

Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are ...

متن کامل

G protein-coupled receptor rhodopsin.

The rhodopsin crystal structure provides a structural basis for understanding the function of this and other G protein-coupled receptors (GPCRs). The major structural motifs observed for rhodopsin are expected to carry over to other GPCRs, and the mechanism of transformation of the receptor from inactive to active forms is thus likely conserved. Moreover, the high expression level of rhodopsin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 564 3  شماره 

صفحات  -

تاریخ انتشار 2004